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MODELING THE DISTRIBUTION OF FINGERPRINT CHARACTERISTICS
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Department of Industrial Engineering and Management Sciences
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ABSTRACT

Quantitative aspects of fingerprints are discussed. A study

undertaken to develop methods for assigning probabilities to partial

fingerprints is summarized, with emphasis on distributional aspects.

KEYWORDS

fingerprints; two-way series; multinomial distribution; Markov

process; Poisson process

1. INTRODUCTION

is paper focuses on the distributional aspects of a study reported in

three earlier articles--Osterburg, Parthasarathy, Raghavan, Sclove (1977),

Sclove (1979), Sclove (1980a)--concerning the assignment of probabilities to

partial fingerprints based on the numbers and locations of occurrences of

the ten Galton characteristics. In the study a grid of cells was superim-

posed on the fingerprints. The number of characteristics in the cells is

modeled as a multivariate two-way series (i.e., a multivariate stochastic

process with two-dimensional indexing parameter). The statistical

parameters were estimated from the data (fingerprints). Estimation of the

probability of partial prints is illustrated. Some comparisons are made

with the estimates provided by an assumption of independence between cells.

Some analysis based on statistical results for infinitely divisible distribu-

tions--1- 1 I .... ( h196)i L. discussed.
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2. BACKGROUND INFORMATION ON FINGERPRINTS

2.1. Types

The three types. The bulb of each finger of the human hand contains

ridge lines that form themselves into patterns, thus providing a basis for

classification. Ridge-line patterns are of three major types: loops (ca.

65%), whorls (ca. 30%), and arches (ca. 5%). There is further subdivision

within each major pattern. Arches are either plain or tented, loops are

radial or ulnar, whorls are plain, central pocket loops, double loops, or

accidentals. This further subdivision within each pattern allows a clas-

sification scheme to be organized so that for the ten fingers many categor-

ies of fingerprint-pattern combinations result. Within each category there

are many fingerprints from different individuals which, to the untrained

eye, appear to be the same. This process of separation through classifica-

tion results in relatively small sets of fingerprints which are of

manageable proportions for the purpose of search and comparison.

Search. Chernoff (1977) has treated the problem of selecting a subset

of files such as fingerprint files for careful comparison with a target

print to decide if the corresponding individual is represented in the files.

It is assumed that much of the data in the files and on the target are

subject to noise or random error. The (likelihood-ratio) solution depends

upon the joint distribution of the filed data and the target data and their

marginal distributions.

Computer assistance. Computer classification of single fingerprints

into types (subdivisions of arch, loop, and whorl) by a syntactic approach

has been achieved; see, e.g., Rao and Balck (1980).

Enhancement of latent fingerprints by numerical processing of the

image has been treated; see, e.g., Chiralo and Berdan (1978).

j _____________________________________________lad""_
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2.2. Ridge counts

In the loop pattern there is a point where the three opposing ridge systems
come together. (The outer and the lower ridge lines change concavity at that

point.) This point is the triradius, or delta. If a straight line is drawn from

the delta to the core, a certain number of ridge lines will be crossed. This number

is the ridge-count. Patterns with no triradius (simple arches) have no ridge count.

In the case of patterns with two triradii (whorls and double loops) there are two

counts; sometimes then one Just works with the higher count. Sometimes the sum

across fingers of the individual ridge counts, when defined, is considered; it is

also called the "ridge count."

Holt (1951-2) has studied the correlation between numbers of crossings on

different fingers.
t 2.3. The Galton details

Fingerprints and dermatoglyphics in general have found use in medicine and genetics

as correlates of genetic abnormalities; see, e.g., Holt (1968) and Priest,

Tishler and Rosner (1976). The emphasis here, however, is on the use of fingerprints

in identification, as in criminalistics. Partial prints such as those left at crime

scenes do not always permit determination of the type or number of crossings. Even if

they did, the individuality of a print would have to be based on the details of the

print. The ridge-line details are termed Galton characteristics since Sir Francis

Galton was among the first to study them systematically [Galton (1892)]. He defined

ten kinds of minutiae. One is a ridge ending, an abrupt ending to a ridge line; ridge

endings are by far the most frequent characteristic. A ridge line may suddenly divide

into two branches, much like a fork in a road; such a characteristic is termed a

bifurcation (or fork). Similarly, eight other characteristics are defined. There is

general agreement upon these ten types of ridge-line details. [See, e.g., Osterburg,

Parthasarathy, Raghavan and Sclove (1977) for details and giagrams of the ten charac-

teristics. See Appendix A for working definitions used for some of the charac-

teristics.] The purpose of the study discussed here was to model the occurrence of

these Galton characteristics, with a view toward the developnent of formulas for

L
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the calculation of probabilities of partial fingerprints.

The study was made as follows. A grid of one millimeter squares

was placed over a fingerprint. Each fingerprint is considered as a

configuration of the cells of the grid. For each cell of the grid

there are several possibilities, one or more of the ten charac-

teristics is there, or no characteristic is present. Thus a con-

figuratrion is a grid of cells, where each cell may be thought of as

either being empty or else being occupied by one or more words, the

words representing the characteristics present. E.g., if a cell con-

tains the words "dot, dot, ending ridge," it means that the area corre-

sponding to that cell contained two dots and one ending ridge.

Table 1 shows a configuration of 43 cells, with 4 ridge endings and two

forks.

[INSERT TABLE 1.)

A match between a suspect's full print and a partial print exists

when there is a section of the full print that is the same as the

partial print. Since we are working in terms of a grid of cells, for

our purposes a match exists when a grid can be laid on the full print

in such a way that the resulting configuration contains a section which

is the same as the configuration corresponding to the partial print.

The fingerprints studied were enlarged to ten times actual size, making

a full rolled print about 8" by 10". The cells of the grid were one cen-

timeter square after enlargement. Members of the project staff coded the

ten Galton characteristics, cell by cell. (See Appendix A for precise

working definitions of the characteristics.) Thirty-nine prints were coded.

(Osterburg had earlier examined 40 prints, from 40 different individuals,

but one was missing, leaving 39 for re-examination.) There is no problem

with representativeness of the sample. The Galton characteristics are

"accidental." They are not genetic. With regard to these characteristics,

two siblings, even two twins, are no more alike than two random persons.
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[On this point see e.g., Kingston (1964, p. 26), and the references given

there.] Therefore, with respect to the Galton characteristics, each and

every person is representative."

3. DATA DESCRIPTION

By an occurrence we mean the occurrence of any one of the ten Galton

characteristics. The 39 fingerprints used yielded a total of 8591 cells

which could be coded. In all there were 2536 occurrences, or 0.295 per

cell. Table 2 gives the distribution of the number of occurrences per

cell, without regard to type.
[INSERT TABLE 2]

The abbreviations used for the characteristics are as follows.

B: bridge

D: dot

E: ending ridge

F: fork (bifurcation)

I: island

L: lake (eye)

0: delta

S: spur

T: trifurcation

Z: double bifurcation

The symbol DE, for example, denotes the occurrence of one dot and one

ending ridge in a cell; BEE would denote the occurrence of a bridge and

two ending ridges in a cell; etc. Altogether 54 combinations occurred,

including one DEEEE and one DDDDE. Table 3 gives the distribution of

these cell configurations. (Of course, with a larger data set, many more

cell configurations would occur.) Note in particular that 77% of the

cells were empty; i.e., the probability that a cell is occupied is .23.
(INSERT TABLE 31
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3.1. Data processing

One physical record corresponded to one cell and took the following

form. (The abbreviation "cc." means "card columns.")

cc. 1-2 cc.3 cc.4 cc.5-6 cc. 7-8 cc. 9-13

Fingerprint Hand Finger Row, i Column, j Alphabetic information
number, n giving cell contents

25 R I 13 11 BEE

The line of data above signifies that there is a bridge (B) and two

ridge endings (E) in the cell corresponding to row 13 and column 11 of

fingerprint number 25, which is from the index finger (I in cc. 4) of

somebody's right hand (R in cc. 3).

Actually these data were not card-punched but rather typed on a ter-

minal and stored directly on disk, so "cc." is used only figuratively. Cc.

9-13 contain alphabetic information giving the contents of the cell. This

shows the need either for programming in a language such as PLL which

allows alphabetic variables or for use of a text editor to convert the

alphabetic data to numerical. The latter method was used, the field of cc.

9-13 being replaced by a field of ten columns (cc. 9-18) of the form X(l),

X(2), X(10), where, for v = 1, 2, ... , 10, X(v) is the number of

occurrences of the v-th characteristic in the cell. E.g., BEE would be

i translated as (0,l,0,0,2,0,0,0,0,0) since, in the numbering used for the

ten characteristics, X(2) = number of bridges and X(5) = number of ridge

endings.

3.2. Notation

The process of occurrence of the Galton characteristics was

modeled as a multivariate two-dimensional stochastic process, more

specifically, a ten-variate process with two-dimensional indexing

parameter. The index designates location (row and column) in the grid.

The ten variates are the numbers of occurrences of the ten Galton
characteristics. That is, the process is {Xij' (ij) in G), where G



Modeling the Distribution of Fingerprint Characteristics 7

is the set of cells corresponding to the fingerprint impression. If

the impression were rectangular, with I rows and J columns, then

the grid G would be simply {(i,j): i = 1, 2,..., I, j = 1, 2,..., J).

Let the subscript n range over the 39 prints. Then the data set is

(x , n = 1, 2, ... , 39, (ij) in G ),
-nij n

where G denotes the grid of usable cells in the n-th print.
n

The basic scalar datum is x , the number of occurrences of the v-th
vnij

Galton characteristic (v=1,2,...,10) in the (i,j)-th cell of the n-th print.

Note that (i,j) is nested in n, in the sense that (ij) has no absolute

meaning; it is not the case that the core (center) of the print always has

the same location.

4. THE MULTINOMIAL MODEL

Two aspects of the modeling process are modeling within cells and

modeling between cells. Osterburg, Parthasarathy, Raghavan, Sclove (1977)

used a multinomial model within cells and independence between cells.

* Sclove (1979) used the same multinomial model within cells but a Markov

model between cells. Sclove (1980a) used the same Markov model between

cells but a Poisson model within cells.

This section treats the multinomial model. The next section treats

probabilities of various configurations under the multinomial model with inde-

pendence. Section 6 summarizes the multinomial model with a Markov between-

cells model. Section 7 summarizes the Poisson within-cells model in the context

of the Markov between-cells model.

The multinomial within-cells model is as follows: For any cell

t there are 13 possibilities; either the cell is empty, or one of the

following twelve possibilities has occurred: B, D, E, F, I, L, 0, S,

T, Z, EE (broken ridge), or other multiple occurrence. (By "multiple

occurrence" we mean more than one occurrence in a cell.)

In regard to the selection of the multinomial categories priority was given
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to the ten standard Galton characteristics, occurring as singletons. The number

of possible combinations (multiple occurrences) of these individual charac-

teristics is enormous. Among the combinations, we selected the double ridge

ending because it was the most frequent; also, it includes a broken ridge, which

is different from a ridge coming to an end. A consequence of lumping rare

multiple occurrences together into the single category "other multiple occur-

rence" is to give the benefit of the doubt to the suspect, in the sense of

giving a conservative, i.e., large, probability estimate for the given

configuration.

In terms of random variables the use of the multinomial model corresponds

to using random vectors

Y =(Y ,Y ,....Y
-nij Onij .lnij 12,nij

defined as follows.

Y , indicator of empty cell = 1 if X = (0,0,0,0,0,0,0,0,0,0)'
Onij -nij

= 0 otherwise

Y , indicator of island = 1 if X = (1,0,0,0,0,0,0,0,0,0)'
lnij -nij

= 0 otherwise

Y , indicator of bridge = 1 if X = (0,1,0,0,0,0,0,0,0,0)'
2nij -nij

= 0 otherwise

Y , indicator of delta = 1 if X = (0,0,0,0,0,0,0,0,0,1)'
l0,nij -nij

= 0 otherwise

Y indicator of
ll,nij two ridge endings = 1 if X = (0,0,0,0,2,0,0,0,0,0)'

-nij
= 0 otherwise

Y indicator of
12,nij multiple occurrence = 1 if Y f 0 for v = 0,1,2,...,l1

vnij
= 0 otherwise
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5. THE MULTINOMIAL MODEL WITH INDEPENDENCE

The model we employ in this section can be summarized as follows.

First there are the two within-cells modeling assumptions developed in

the preceding section.

(1) A fingerprint is characterized as a configuration of the cells of

a grid.

(2) For any cell there are 13 possibilities; either the cell is empty,

or one of the following twelve possibilities has occurred: B, D,

E, F, I, L, 0, S, T, Z, EE (broken ridge), or other multiple

occurrence. (By "multiple occurrence" we mean more than one

occurrence in a cell.)

Now, for between-cells modeling, we consider

(3) The cells are statistically independent.

Assumption (1) is used throughout the study; (2) is used in this

and the next section but replaced in Section 7 by a Poisson assumption;

(3) is used in this section and replaced in Section 6 by a Markov

model.

The probability P of a given configuration is, under this model,

given by the point multinomial distribution, as

log P = k(O)log P(O) + k(l)log P(1) + ... + k(12)log P(12),

where the k(i), i = 0, 1, 2, ..., 12, are non-negative integers summing

to t, the total number of cells in the print, and the P(i)'s are the

probabilities of the 13 possibilities and hence sum to one. (For

notational reasons and because the probabilities involved are small it

is convenient to work in terms of logarithms.)

Estimates of probabilities. The parameters P(i) of the model were

estimated from the data. See Table 4. The variance of the estimate of

any one of the P(i) is P(i)[1-P(i)]/n, i = 0, 1, 2, ... , 12, where n

= 8591 cells. Table 4 gives estimates p(i) of P(i), i 0, 1, 2, ... ,
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12, and also estimates of the corresponding standard deviations. (We

use upper case P for the parameter and lower case p for the

estimate.)
[INSERT TABLE 4.1

The probability P of a configuration of k(O) empty cells, k(l)

cells containing islands, k(2) cells containing bridges, ..., k(lO)

cells containing deltas, k(ll) cells containing two ending ridges, and

k(12) cells containing other multiple occurrences is estimated by an

estimate p given by

log p = k(O)log p(O) + k(l)log p(l) + ... + k(12)log p(12).

Let E, for entropy (information) be defined as E = -log P and

e = -log p. We have

E = -k(O)logP(0) - k(1)log P(1) - ... - k(12)log P(12).

Appendix B gives confidence bounds for E, based on the estimate e.

The study of inter-cell dependence discussed in the next section

[from Sclove (1979)] indicates that the approximations of the present

section should give results that are sufficiently accurate.

The preceding has dealt with the assignment of a probability P

to the occurrence of a given configuration in a given set of cells.

For inferential purposes it is necessary to estimate the probability

that a person has this configuration anywhere on his fingers. A

discussion of this aspect of the problem is given in Osterburg,

Parthasarathy, Raghavan and Sclove (1977).

6. THE MULTINOMIAL MARKOV MODEL

The next analysis, relating to dependence among cells, shows that

the probability that a cell is occupied increases monotonically with the

number of neighbors occupied. Square blocks of 9 cells, 3 cells by 3 3I
cells, were examined to determine the extent of inter-cell dependence.

The data set of Osterburg, Parthasarathy, Raghavan and Sclove (1977)

yielded 845 such blocks of cells. For 1 = 1, 2, ... , 845 blocks, let
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the variable y(i) = 1 or 0 according as the center cell of the 1-th

block is occupied or not, and let x~i) be the number of adjacent cells

which are occupied; x(i) is between 0 and 8. Table 5 gives the

cross-tabulation of y and x and gives, for each value of x, the

proportion of y's that are equal to 1, i.e., the proportion of center

cells which are occupied.
[INSERT TABLE 5.1

The probability of occupancy increases monotonically with x.

Such absolute consistency was not expected, firstly because it seems so

rare in data analyses and secondly because it was thought that

occurrences in most of the adjacent cells might crowd out occurrence in

the center cell.

The value of the chi-square statistic for testing independence

based on Table 5 is 18.77 (P<.0059 6 d.f., the categories x = 6,7, and

8 having been pooled). The decomposition of this overall value based on

the value .1404 of the correlation coefficient between x and y is given

in Table 6. The value of chi-square due to correlation, 16.65, is the

sample size (845 blocks) times the square of the correlation coefficient.
[INSERT TABLE 6.]

[In order to achieve independent trials for the chi-square test,

separate blocks of 9 cells were used. This greatly reduces the effective

sample size. The results here were clear, so it was not necessary to be

more efficient. It should be noted, however, that such problems can be

handled in a more efficient manner by Besag's (1974) "coding" scheme, used

and discussed in later sections where necessary.]

The above analysis demonstrated the necessity of developing a

model which took account of inter-cell dependence. (It was subsequently

found that the model based on inter-cell independence gave adequate

results, but this determination could be made only in the context of a

model incorporating dependence.) Accordingly, then, the model of Sec-

tion 5 was extended to consider inter-cell dependence and the occur-
rence of the characteristics was modeled as a two-dimensional ?4arkov-
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type process. This analysis is reported in Sclove (1979). The model

can be described by saying that it is a nearest-neighbor, Markov-type

model where the conditioning is on the sum and the allocation across'

types of characteristics is independent of the value of the sum.

Under this model, the estimated probability of the configuration of

Table 1 is -12.0 . Compare this with the figure of -11.4 given by the

approximation based on an assumption of independence between cells. The

difference in logarithms is 0.6; the ratio of the two estimates is thus 4:1.

This difference is unimportant since we are interested only in order of

magnitude. Note further that the estimate based on independence is a larger

probability, i.e., it is conservative in this sense. [See Osterburg, Par-

thasarathy, Raghavan and Sclove (1977) for some discussion of the bearing of

these probabilities on the guilt or innocence of a suspect. A large

probability estimate is conservative in favor of a suspect, in the sense

that it gives the suspect the benefit of the doubt.] In general, independ-

ence gives too much weight (too low a probability) to configurations with a

lot of clustering of occurrences. In the configuration of Table 1 there is

some but not a great deal of clustering.

L



Modeling the Distribution of Fingerprint Characteristics 13

7. THE POISSON MARKOV MODEL

The categories defined in Assumption 2 are somewhat arbitrary. The

ten categories corresponding to the occurrence of each of the ten charac-

teristics as singletons are natural enough; it is the lumping together of

multiple occurrences which warrants alternative treatment. In the preceding

section the occurrence of the characteristics was modeled as a two-

dimensional multinomial process, taking account of dependence among cells

but not dealing differently with the problem of multiple occurrences. In

Sclove (1980a) the occurrence of the characteristics is modeled as a two-

dimensional Poisson process, not only taking account of dependence among

cells but also providing alternative treatment of multiple occurrences.

According to the between-cells data analysis discussed above, the

probability that a cell is occupied increases monotonically with the number

of neighbors occupied. Accordingly, we introduced an assumption that the

expected number of occurrences in a cell depends upon the outcomes in neigh-

boring cells only through the number of such cells that are occupied.

A within-cells data analysis is discussed in Appendix C. It was found

that negative binomial distributions provided a good fit to the distribution

of the number of characteristics per cell, and to the numbers of different

characteristics. This is consistent with a model of a mixture of Poisson

distributions, for a negative binomial distribution can be obtained as a

mixture of Poisson distributions. Accordingly, we set out to test the

hypothesis that the number of occurrences in a given cell is a Poisson

random variable, at least conditionally.

These assumptions combined into an assumption that the number of occur-

rences in a cell is distributed according to a Poisson distribution with

parameter H, say, which depends upon the random variable A, the number of

adjacent cells occupied. In other words, the conditional distribution of

the number of occurrences, given the number of adjacent cells that are
occupied, i.e., given A = a, is Poisson with parameter M(a), a 0 0, 1, 2,
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3, or 4.

This assumption was tested by fitting the number of occurrences of

characteristics for each fixed number of adjacencies to a Poisson diitrib-

ution and checking the goodness of fit. In making this test the dependence

among cells had to be taken into account. The problem of dependence was

treated by a method of "coding" discussed by Besag (1974); see the discus-

sion by Bartlett (1975), p. 27. To understand the method, suppose the cells

were labelled as in Table 7 with two symbols, y and o. This
[INSERT TABLE 71

allows the values at the y-sites to be taken, conditional on the values at

the o-sites, as independent. Table 8 gives the number of occurrences, by

number of adjacencies, for the "y" cells in Besag's coding scheme. The

results for the four orientations ere L'ven. The generalized likelihood

ratio test was used to compare the Poisson fit with the empirical distrib-

ution. The "chi-square" values in Table 8 are values of -2 ln L, where

L 1, the generalized likelihood ratio. The Poisson fit appeared adequate.

(The Pearson chi-square gave similar results.) Accordingly, a model was

developed, based on these assumptions. Details are given in Sclove

(1980a).

[INSERT TABLE 8]

This Poisson Markov model gave for the configuration of

Table 1 an estimated log probability of -12.0. Compare this with

result of -11.4 given by the approximation based on independence

and -11.8 given by the multinomial Markov model. We have

12.0 - 11.4 = 0.6; the ratio of the two corresponding estimates is

about 4:1.

8. THE INFINITELY DIVISIBLE MODEL

Alternative models considered include modeling the observed random

vector giving the numbers of the ten characteristics per cell as an

infinitely divisible random vector. [See Sclove (1980b) for a
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discussion of multivariate infinitely divisible random vectors.]

A random variable X (which may be a scalar, vector or matrix) is

infinitely divisible if there exists a triangular sequence Y(l,l);

Y(2,1), Y(2,2); ...; Y(n,l), Y(n,2), ..., Y(n,n); ..., such that, for

each n = 1, 2, ..., the n random variables Y(n,l), Y(n,2), .

Y(n,n) are independent and identically distributed and the variables

X(l), X(2), ..., X(n), ..., defined by

X(l) = Y(l,l)

X(2) = Y(2,1) + Y(2,2)

X(n) = Y(n,l) + Y(n,2) + ... + Y(n,n)

all have the same distribution as X.

An assumption that X = (X ,X , *.., X )' in the fingerprint
- 1 2 10

study is infinitely divisible can be supported on both physical and

probabilistic grounds, as follows.

Speaking first from the physical point of view, it is not at all

unreasonable to consider a point process to be infinitely divisible.

For, the random variables count the numbers of occurrences in some

specified area, such as the cells of the grid. One can conceive of

using finer and finer grids. The Y's in the decomposition necessary

for infinite divisibility correspond to the cells of these finer parti-

tions. The Galton characteristics may be considered as occurring at

dimensionless points, a fork occurring at the point of bifurcation, a

spur at the point of separation, and so on. Thus the assumption of

infinite divisibility seems reasonable.

Arguing from probabilistic grounds, the assumption of infinite

divisibility, at least under a hypothesis of independence of the
variates, seems Justified, on the grounds that negative binomial and
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A~..........

Poisson distributions, which fit the marginal distributions, are infi-

nitely divisible.

As discussed in Sclove (1980b), Pierre (1971) defines the measure of

dependence (h here, pi in his notation)

2 2 2
h(XY) = Cov[(X-EX) ,(Y-EY) j - 2[Cov(X,Y)J

for random variables X,Y in an infinitely divisible random vector with
1/2

no Gaussian component. He further shows that [h(X,Y)/[h(X,X)h(Y,Y)J is

between zero and one and hence is a normalized measure of dependence

analogous to a correlation coefficient. [The parameter h(X,Y) is the

cumulant of order (2,2) of (X,Y); the corresponding k-statistic estimate can

be used.] Estimates of h were used to estimate the normalized measure for

the 10 x 9/2 = 45 pairs of characteristics. The values were small; in fact,

the largest was only .018. (The square root of this is still only .13.)

Thus an assumption of independence of the ten variates is further supported

by this analysis.
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APPENDIX A: The Galton Characteristics

Definitions of some of the Galton characteristics were refined by

means of precise working definitions, necessary to accomplish the

coding.

A bridge was defined as less than two centimeters in length in the

enlarged photograph (i.e., two millimeters in actuality); otherwise, it

would be coded as a fork.

A dot was defined as being large enough to encompass one pore.

Smaller "dots" were not counted; larger "dots" were coded as short

ridges.

Distinct breaks in ridges were coded as two separate ending ridges

to distinguish such breaks from ridges simply coming to an end.

A spur was defined as being less than two centimeters in length in

the enlargement (i.e., two millimeters in actuality); otherwise, it was

coded as a fork. A spur was counted only once: the end of a spur was

not counted as a ridge ending.

The sizes used are of an order suggested by T. Dickerson Cooke of

the Institute of Applied Science, Chicago, Illinois [Cooke (1974)] and

are consistent with recommendations of the Committee on Standardization

of the International Association for Identification.

I
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APPENDIX B: Derivation of Confidence Bounds for the Entropy

The negative log probabilities considered in the model based on

independence are in terms of logs base 10 and are given by the

expression

E = -log P = -[k(O) log P(O) + k(l) log P(l) + ... + k(lO) log P(1O)],
2

where P(O)=-P(l)-P(2)-...-P(12) and k(O)=t-k(1)-k(2)-...-k(12), t being

the total number of cells in the print. For the estimate e of E we have

e = -log p = c ln p = cH, where H = in p and the constant c is

the log base 10 of the base "e" of the natural logs (about 0.434). Thus

Var(e) = c Var(H). The asymptotic variance of H is given by Bowman et al.

(1971); this gives
2 12 2 2

VarCe) [ki) /P(i) t .
i=O

This variance is estimated by substituting the estimates p(i) for the

P(i). E.g., for 12 ending ridges and no other characteristics in a

print of area t = 72 cells, we have 60 empty cells. Hence k(O) =60,

k(5) = 12, and the other k(i) are 0. From Table 4 we have p(O) = .766

and p(5) = .0832. Thus e = -12 log .0832 - 60 log .766 = 19.9,
2 2 2 2

and Var(e) 0 (1/8591) 0.434 [(60 /.766) + (12 /.0832) - 72 1 =

0.0273. The corresponding standard deviation, the square root of this,

is 0.165. Thus a 95% confidence interval is obtained from the point

estimate by adding and subtracting 1.96(0.165) = 0.3.

LI
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APPENDIX C: Marginal Distribution of the Characteristics

The distribution of the number of occurrences per cell is

given in Table 2.

For testing goodness-of-fit, it was necessary to use Besag's

coding scheme to achieve independent trials. This gave the distrib-

ution of Table 9. A Poisson distribution is inadequate [-2 In L =

9.69, 3 d.f., P = .021; the Pearson chi-square gave a similar result:

chi-square statistic = 8.63, 3 d.f. (pooling categories), P = .03].

The distribution is well fit by a negative binomial distribution; in

fact, the special case of a geometric distribution provides an adequate

fit (Pearson chi-square = 3.11, 3 d.f., P = .38).
[INSERT TABLE 91

An interpretation of the fit by the negative binomial family is

that what is involved is a gamma-type mixture of Poisson distributions

[see, e.g., Parzen (1962, p. 57)1, resulting in a negative binomial

distribution, as in the classical accident studies of Greenwood and

Yule (1920). Empirical support for the assumption is demonstrated by

the plausibility of the following assumptions [the usual axioms for a

Poisson process [see, e.g., Parzen '1962, p. 119)], generalized to two

dimensions]. Given any set S in the (x,y)-plane, let N(S) be the number

of occurrences in S and let a(S) be the area of S. Given any point

(x,y), let (S(n)) be a sequence of sets tending to (x,y) as n

tends to infinity. Then the following assumptions are plausible.

There is a positive number M(x,y) such that, as n tends to infinity,

(I - Pr(N(S(n))=O])/a(S(n) tends to M(x,y),

Pr[N(S(n))=2J/a(S(n)) tends to M(x,y),

Pr[N(S(n)))2]/a(S(n)) tends to 0

The intensity parameter varies with position in the sense that occur-

rences are more probable in the pattern than the non-pattern area and the

intensity may be a decreasing function of the distance from the core of
the pattern. The two-dimensional non-homogeneous Poisson process may be
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termed a Poisson random field, since the intensity parameter varies with

position. See, e.g., Cox and Miller (1965) for a discussion of such

Poisson processes over general spaces. The monograph by Bartlett (1975)

provides a discussion of general models and methods for analysis of two-

dimensional processes; see the Appendix in Sclove (1979) for a synopsis.
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LIST OF CAPTIONS FOR TABLES

1. Configuration of 43 cells with 4 ending ridges and 2 forks.

0 = empty cell, E = ending ridge, F = fork.

2. Distribution of number of occurrences

3. Distribution of cell configurations

4. Estimates of probability parameters

5. Cross-tabulation of occupancy of center cell

and number of adjacent cells occupied

6. Decomposition of chi-square according to correlation between x and y

7. Coding scheme for obtaining conditionally-independent trials

in a second-order process

8. Distribution of number of occurrences, by number of adjacencies,

with Besag's coding scheme, for test of goodness-of-fit

of Poisson distribution

9. Distribution of number of occurrences

for subsample of independent cells
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1. Configuration of 43 cells with 4 ending ridges

and 2 forks. 0 =empty cell, E Uending ridge,

F = fork.

1 2 3 4 5 6

a 0 0 0 0 0 0

b E 0 0 0 E 0

c 0 0 F 0 0 0

d 0 0 0 0 0 0

e 0 0 0 E 0 0

f 0 0 0 0 F 0

g 0 E 0 0 0 0

h 0
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2. Distribution of number of occurrences

Number of occurrences 0 1 2 3 4 5 Total

Number of cells 6584 1594 320 72 19 2 8591

Proportion of cells .766 .185 .0372 .00838 .0022 .0023 1.00

I.....
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3. Distribution of cell configurations

Cell Frequency
configuration Number of cells Percent of cells

Empty 6584 76.6%

E 715 8.32
F 328 3.82
I 152 1.77
D 130 1.51
EE 119 1.39
B 105 1.22
S 64 0.745
L 55 0.640
EL 32 0.372
DE 32 0.372
EEE 21 0.244
EI 21 0.244
0 17 0.198
DD 15 0.175
BE 13 0.151
Z 12 0.140
DI 11 0.128
EEEE 10 0.116
ES 10 0.116
DDI 10 0.116
II 9 0.105
FI 9 0.105
BF 7 0.0815
DEE 7 0.0815
FF 5 0.0582
T 5 0.0582
EEF 4 0.0466
BEE 4 0.0466
EII 4 0.0466
FL 3 0.0349
BB 3 0.0349
FS 2 0.0233
BD 2 0.0233
DDE 2 0.0233
LL 2 0.0233
Other (19 other

multiple occurrences) 67 0.780

Total 8591 cells 100.0%

-- - - - - -- - - - - -- - - - - -- - - - - -- - - - -- -- -- -
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4. Estimates of probability parameters

Estimated
Estimate of standard

!Probability Coll Fre- probability deviation

parameter configuration quency parameter of estimate

P(O) Empty 6584 .766 .0045

P(M) Island (I) 152 .0177 .0014

P(2) Bridge (B) 105 .0122 .0012

P(3) Spur (S) 64 .00745 .00093

P(4) Dot (D) 130 .0151 .0013

P(5) Ending ridge (E) 715 .0832 .0030

P(6) Fork (F) 328 .0382 .0021

P(7) Lake (L) 55 .00640 .00086

P(8) Trifurcation (T) 5 .000582 .00024

P(9) Double
bifurcation (Z) 12 .00140 .00040

P(10) Delta (0) 17 .00198 .00048

P(11) Broken ridge
(or EE) 118 .0139 .0013

P(12) Other multiple
occurrence 305 .0355 .0020

8591 1.0

Source: Table 3
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5. Cross-tabulation of

occupancy of center cell

and number of adjacent cells occupied

x y

0 1 Total

0 152(84.4) 28( 15.6) 180(100)

1 170(79.15) 45( 20.9) 215(100)

2 163(78.4) 45( 21.6) 208(100)

3 97(77.0) 29( 23.0) 126(100)

4 44(65.7) 23( 34.3) 67(100)

5 23(63.9) 13( 36.1) 36(100)

6 7(58.3) 5( 41.7) 12(100)

7 o(---) 0( -- 0(---)

8 0( 0.0) 1(100.0) 1(100)

656 189 845 blocks

of cells

y = 1 if given (center) cell is occupied

= 0 if it is empty

x = number of adjacencies (number of adjacent cells occupied)
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6. Decomposition of chi-square

according to correlation between x and y

Source of d.f. Value of
Variation Chi-square

Overall 6 18.77 (P<.005)

Correlation 1 16.65 (P<.005)

Residual 5 2.12 (.80<P<.85)

Wild'.
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7. Coding scheme for obtaining conditionally-independenlt trials in a

second-order process

0 0 0 0 0 0 0 0

0 y 0 y 0~ o y

o o 0 0 0 0 0 0

oy DY 0Dy 0 0 y
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8. Distribution of number of occurrences, by number of adjacencies,

with Besag's coding scheme, for test of goodness-of-fit of Poisson

distribution

No.

of
adja- Orien- Number of n Vari- Chi-
cen- tation occurrences Mean ance square d.f. P
cies 0 1 2 3 4

0 1 174 34 7 1 0 216 .24 .27 2.79 2 .25
2 175 34 4 0 0 220 .20 .20 0.58 1 .45
3 180 37 2 0 0 219 .19 .17 1.19 1 .28
4 187 41 7 0 0 235 .23 .24 1.64 1 .20

1 1 161 44 5 1 0 211 .27 .27 0.55 2 .76
2 177 32 8 0 3 220 .27 .44 26.9 3 <.001
3 167 47 8 1 2 225 .33 .43 10.1 3 .02
4 152 46 6 2 0 206 .31 .33 1.80 2 .41

2 1 78 33 7 1 1 120 .45 .52 2.54 3 .47
2 76 25 6 3 0 110 .42 .52 4.48 2 .11
3 70 28 8 0 0 106 .42 .40 2.48 1 .11
4 77 1 7 3 0 98 .35 .56 17.3 2 <.001

3 1 24 12 5 2 1 44 .73 .99 2.88 3 .41
2 25 10 3 0 1 39 .51 .73 5.06 3 .17
3 21 8 4 2 0 35 .63 .83 3.27 2 .19
4 23 15 2 1 0 41 .54 .50 1.48 2 .48

4 1 4 2 1 0 0 7 .57 .62 0.48 1 .48
2 3 5 2 0 0 10 .90 .54 2.08 1 .15
3 7 2 3 0 0 12 .67 .79 3.62 1 .06
4 2 4 3 0 0 9 1.11 .61 2.96 1 .08

n's differ somewhat due to border effects; the grids are not
perfect rectangles.

I~ ~~~~~~~~~~~~~~.I IA1Ik .. 1IlI........ -I I"lllii iilir

l~l ' t

"
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9. Distribution of number of occurrences

for subsample of independent cells

Number of occurrences

0 1 2 3 4 5 n Mean

Number of cells 441 125 25 5 2 0 598 0.331

Proportion of cells .737 .209 .042 .008 .003 .000 1.000
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